OUPONT>

Military applications

Aerospace

• Electronic parts

Screen printing

Insulation tubing

• PCB stencils

DuPont[™] Kapton[®] FPC

Polyimide Film

Description

DuPont[™] Kapton[®] FPC polyimide film is treated on both sides and has the same excellent balance of physical, chemical and electrical properties over a wide temperature range offered by general purpose Kapton[®] HN. Kapton[®] FPC offers superior dimensional stability and adhesion, and is specifically designed for flex circuit manufacturers. Adhesion data for FPC can be referenced in the adhesion to Kapton[®] technical bulletin.

In applications where superior adhesion and low shrinkage are important, Kapton[®] FPC is the polyimide film of choice.

Certification

Kapton® FPC meets IPC 4202B requirements..

Applications

- Flexible printed circuits
- Automotive
- Computers
- Consumer products
- Telecommunications equipment
- Industrial instrumentation and controls

Product Specifications

Kapton[®] FPC is manufactured, slit and packaged according to the product specifications listed in H-38479 (6/18).

Table 1 – Typical Properties of Kapton® FPC at 23°C (73°F)

Property	Unit	1 mil 25µm	2 mil 50µm	3 mil 75µm	5 mil 125µm	Test Method
Physical						
Tensile Strength	kpsi (MPa)	33.5 (231)	34 (234)	34 (234)	33.5 (231)	ASTM D-882-91
Elongation	%	72	72	78	82	ASTM D-882-91
Tensile Modulus	kpsi (GPa)	400 (2.8)	400 (2.8)	400 (2.8)	400 (2.8)	ASTM D-882-91
Adhesion	pli (N/mm)	10 (1.8)	10 (1.8)	10 (1.8)	10 (1.8)	IPC-TM-650 Method 2.4.9*
Density	g/cc	1.42	1.42	1.42	1.42	ASTM D-1505-90
MIT Folding Endurance	cycles	285,000	55,000	6,000	3,000	ASTM D-2176-89
Tear Strength-propagating (Elmendorf), N		0.07	0.21	0.38	0.58	ASTM D-1922-89
Tear Strength, initial (Graves), N		7.2	16.3	26.3	46.9	ASTM D-1004-90
Thermal						
Flammability		94V0	94V0	94V0	94V0	UL-94
Shrinkage (30 min at 150°C)	%	0.03	0.03	0.03	0.03	IPC-TM-650
Method 2.2.4A						
Limiting Oxygen Index	%	37	43	46	45	ASTM D-2863-87
Electrical						
Dielectric Strength	kV/mil (kV/mm)	7.7 (303)	6.1 (240)	5.1 (201)	3.9 (154)	ASTM D-149-91
Dielectric Constant	1kHz	3.4	3.4	3.5	3.5	ASTM D-150-92
Dissipation Factor at 1 kHz		0.0018	0.0020	0.0020	0.0026	ASTM D-150-92

Acrylic adhesive to 1 oz. copper

Table 2 – Physical Properties of Kapton® FPC Film

Typical Value at				
Property	23°C (73°F)	200°C (392°F)	Test Method	
Yield Point at 3%, MPa (psi)	69 (10,000)	41 (6000)	ASTM D-882-91	
Stress to produce 5% elongation, MPa (psi)	90 (13,000)	62 (9000)	ASTM D-882-91	
Impact Strength, N· cm· (ft lb)	78 (0.58)		DuPont Pneumatic Impact Test	
Coefficient of Friction, kinetic (film-to-film)	0.48		ASTM D-1894-90	
Coefficient of Friction, static (film-to-film)	0.63		ASTM D-1894-90	
Refractive Index (sodium D line)	1.70		ASTM D-542-90	
Poisson's Ratio	0.34		Avg. three samples Elongated at 5%, 7%, 10%	
Low Temperature Flex Life	pass		IPC-TM 650, Method 2.6.18	

Table 3 – Thermal Properties of DuPont[™] Kapton[®] FPC Film

Thermal Property	Typical Value	Test Condition	Test Method
Melting Point	None	None	ASTM E-794-85 (1989)
Thermal Coefficient of Linear Expansion	20 ppm/°C (11 ppm/°F)	-14 to 38°C (7 to 100°F)	ASTM D-696-91
Coefficient of Thermal Conductivity, W/m·K cal cm· sec·°C	0.12 2.87 × 10 ⁴	296 K 23°C	ASTM F-433-77 (1987)
Specific Heat, J/g•K (cal/g·°C)	1.09 (0.261)		Differential calorimetry
Heat Sealability	not heat sealable		
Solder Float	pass		IPC-TM-650, method 2.4.13A
Smoke Generation	D _m =<1	NBS smoke chamber	NFPA-258
Glass Transition Temperature (Tg)	A second order transition occurs in Kapton® between 360°C(680°F) and 410°C(770°F) and is assumed to be the glass transition temperature. Different measurement techniques produce different results within the above temperature range.		

Table 4 – Electrical Properties of Kapton[®] FPC Film at 23°C (73°F)

Property Film Gage	Typical Value		Test Condition	Test Method
Dielectric Strength 25 µm (1 mil)	V/m kV/mm 303	(V/mil) (7700)	60 Hz	
50 μm (2 mil)	240	(6100)	1/4 in electrodes	ASTM D-149-91
75 µm (3 mil)	201	(5100)	500 V/sec rise	
125 µm (5 mil)	154	(3900)		
Dielectric Constant				
25 µm (1 mil)	3.4			
50 µm (2 mil)	3.4		1 kHz	ASTM D-150-92
75 µm (3 mil)	3.5			
125 µm (5 mil)	3.5			
Dissipation Factor				
25 µm (1 mil)	0.0018			
50 µm (2 mil)	0.0020		1 kHz	ASTM D-150-92
75 µm (3 mil)	0.0020			
125 µm (5 mil)	0.0026			
Volume Resistivity	Ω·cn	1 ¹⁷		
25 µm (1 mil)	1.5 x 1017			
50 µm (2 mil)	1.5 x 1017			ASTM D-257-91
75 µm (3 mil)	1.4 x 1017			
125 µm (5 mil)	1.0 x 1	017		

Dimensional Stability

The dimensional stability of DuPont[™] Kapton[®] polyimide film depends on two factors-the normal coefficient of thermal expansion and the residual stresses placed in the film during manufacture. The latter causes Kapton[®] to shrink on its first exposure to elevated temperatures as indicated in the bar graph in **Figure 1.** Once the film has been exposed, the normal values of the thermal coefficient of linear expansion as shown in **Table 5** can be expected.

Fugure 1. Residual Shrinkage vs. Exposure Temperature and Thickness, Kapton[®] HN and HPP-ST Films

Table 5 – Thermal Coefficient of Expansion, Kapton[®] FPC Film, 25 μm (1 mil), Thermally Exposed

Temperature Range, °C, (°F)	ppm/°C
30–100 (86–212)	17
100–200 (212–392)	32
200–300 (392–572)	40
300-400 (572-752)	44
30–400 (86–752)	34

electronics.dupont.com

For more information on DuPont[™] Kapton[®] or other DuPont products, please visit our website.

The information provided in this data sheet corresponds to our knowledge on the subject at the date of its publication. It may be subject to revision as new knowledge and experience becomes available. This information is not intended to substitute for any testing you may need to conduct to determine for yourself the suitability of our products for your particular purposes. Since we cannot anticipate all variations in end-use and disposal conditions, DuPont makes no warranties and assumes no liability in connection with any use of this information. It is intended for use by persons having technical skill, at their own discretion and risk. Nothing in this publication is to be considered as a license to operate under or a recommendation to infringe any patent right.

CAUTION: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, see "DuPont Medical Caution Statement," H-50102-5 and "DuPont Policy Regarding Medical Applications" H-50103-5.

DuPont[®], the DuPont Oval Logo, and Kapton[®] are trademarks or registered trademarks of DuPont or its affiliates. Copyright © 2019 DuPont de Nemours Inc. K-15361 (06/19)